1,253 research outputs found

    Strain induced coherent dynamics of coupled carriers and Mn spins in a quantum dot

    Full text link
    We report on the coherent dynamics of the spin of an individual magnetic atom coupled to carriers in a semiconductor quantum dot which has been investigated by resonant photoluminescence of the positively charged exciton (X+). We demonstrate that a positively charged CdTe/ZnTe quantum dot doped with a single Mn atom forms an ensemble of optical Lambda systems which can be addressed independently. We show that the spin dynamics of the X+Mn complex is dominated by the electron-Mn exchange interaction and report on the coherent dynamics of the electron-Mn spin system that is directly observed in the time domain. Quantum beats reflecting the coherent transfer of population between electron-Mn spin states, which are mixed by an anisotropic strain in the plane of the quantum dot, are clearly observed. We finally highlight that this strain induced coherent coupling is tunable with an external magnetic field

    Resonant photoluminescence and dynamics of a hybrid Mn-hole spin in a positively charged magnetic quantum dot

    Full text link
    We analyze, through resonant photoluminescence, the spin dynamics of an individual magnetic atom (Mn) coupled to a hole in a semiconductor quantum dot. The hybrid Mn-hole spin and the positively charged exciton in a CdTe/ZnTe quantum dot forms an ensemble of Λ\Lambda systems which can be addressed optically. Auto-correlation of the resonant photoluminescence and resonant optical pumping experiments are used to study the spin relaxation channels in this multilevel spin system. We identified for the hybrid Mn-hole spin an efficient relaxation channel driven by the interplay of the Mn-hole exchange interaction and the coupling to acoustic phonons. We also show that the optical Λ\Lambda systems are connected through inefficient spin-flips than can be enhanced under weak transverse magnetic field. The dynamics of the resonant photoluminescence in a p-doped magnetic quantum dot is well described by a complete rate equation model. Our results suggest that long lived hybrid Mn-hole spin could be obtained in quantum dot systems with large heavy-hole/light-hole splitting

    Cluster density functional theory for lattice models based on the theory of Mobius functions

    Full text link
    Rosenfeld's fundamental measure theory for lattice models is given a rigorous formulation in terms of the theory of Mobius functions of partially ordered sets. The free-energy density functional is expressed as an expansion in a finite set of lattice clusters. This set is endowed a partial order, so that the coefficients of the cluster expansion are connected to its Mobius function. Because of this, it is rigorously proven that a unique such expansion exists for any lattice model. The low-density analysis of the free-energy functional motivates a redefinition of the basic clusters (zero-dimensional cavities) which guarantees a correct zero-density limit of the pair and triplet direct correlation functions. This new definition extends Rosenfeld's theory to lattice model with any kind of short-range interaction (repulsive or attractive, hard or soft, one- or multi-component...). Finally, a proof is given that these functionals have a consistent dimensional reduction, i.e. the functional for dimension d' can be obtained from that for dimension d (d'<d) if the latter is evaluated at a density profile confined to a d'-dimensional subset.Comment: 21 pages, 2 figures, uses iopart.cls, as well as diagrams.sty (included

    Effectiveness of slow motion video compared to real time video in improving the accuracy and consistency of subjective gait analysis in dogs

    Get PDF
    Objective measures of canine gait quality via force plates, pressure mats or kinematic analysis are considered superior to subjective gait assessment (SGA). Despite research demonstrating that SGA does not accurately detect subtle lameness, it remains the most commonly performed diagnostic test for detecting lameness in dogs. This is largely because the financial, temporal and spatial requirements for existing objective gait analysis equipment makes this technology impractical for use in general practice. The utility of slow motion video as a potential tool to augment SGA is currently untested. To evaluate a more accessible way to overcome the limitations of SGA, a slow motion video study was undertaken. Three experienced veterinarians reviewed video footage of 30 dogs, 15 with a diagnosis of primary limb lameness based on history and physical examination, and 15 with no indication of limb lameness based on history and physical examination. Four different videos were made for each dog, demonstrating each dog walking and trotting in real time, and then again walking and trotting in 50% slow motion. For each video, the veterinary raters assessed both the degree of lameness, and which limb(s) they felt represented the source of the lameness. Spearman’s rho, Cramer’s V, and t-tests were performed to determine if slow motion video increased either the accuracy or consistency of raters’ SGA relative to real time video. Raters demonstrated no significant increase in consistency or accuracy in their SGA of slow motion video relative to real time video. Based on these findings, slow motion video does not increase the consistency or accuracy of SGA values. Further research is required to determine if slow motion video will benefit SGA in other ways

    Lattice density-functional theory of surface melting: the effect of a square-gradient correction

    Full text link
    I use the method of classical density-functional theory in the weighted-density approximation of Tarazona to investigate the phase diagram and the interface structure of a two-dimensional lattice-gas model with three phases -- vapour, liquid, and triangular solid. While a straightforward mean-field treatment of the interparticle attraction is unable to give a stable liquid phase, the correct phase diagram is obtained when including a suitably chosen square-gradient term in the system grand potential. Taken this theory for granted, I further examine the structure of the solid-vapour interface as the triple point is approached from low temperature. Surprisingly, a novel phase (rather than the liquid) is found to grow at the interface, exhibiting an unusually long modulation along the interface normal. The conventional surface-melting behaviour is recovered only by artificially restricting the symmetries being available to the density field.Comment: 16 pages, 6 figure

    SoK: Lending Pools in Decentralized Finance

    Get PDF
    Lending pools are decentralized applications which allow mutually untrusted users to lend and borrow crypto-assets. These applications feature complex, highly parametric incentive mechanisms to equilibrate the loan market. This complexity makes the behaviour of lending pools difficult to understand and to predict: indeed, ineffective incentives and attacks could potentially lead to emergent unwanted behaviours. Reasoning about lending pools is made even harder by the lack of executable models of their behaviour: to precisely understand how users interact with lending pools, eventually one has to inspect their implementations, where the incentive mechanisms are intertwined with low-level implementation details. Further, the variety of existing implementations makes it difficult to distill the common aspects of lending pools. We systematize the existing knowledge about lending pools, leveraging a new formal model of interactions with users, which reflects the archetypal features of mainstream implementations. This enables us to prove some general properties of lending pools, and to precisely describe vulnerabilities and attacks. We also discuss the role of lending pools in the broader context of decentralized finance and identify relevant research challenges

    Density functional theory for nearest-neighbor exclusion lattice gasses in two and three dimensions

    Full text link
    To speak about fundamental measure theory obliges to mention dimensional crossover. This feature, inherent to the systems themselves, was incorporated in the theory almost from the beginning. Although at first it was thought to be a consistency check for the theory, it rapidly became its fundamental pillar, thus becoming the only density functional theory which possesses such a property. It is straightforward that dimensional crossover connects, for instance, the parallel hard cube system (three-dimensional) with that of squares (two-dimensional) and rods (one-dimensional). We show here that there are many more connections which can be established in this way. Through them we deduce from the functional for parallel hard (hyper)cubes in the simple (hyper)cubic lattice the corresponding functionals for the nearest-neighbor exclusion lattice gases in the square, triangular, simple cubic, face-centered cubic, and body-centered cubic lattices. As an application, the bulk phase diagram for all these systems is obtained.Comment: 13 pages, 13 figures; needs revtex

    Nuevas modalidades de participación ciudadana en ciencia: hibridación, satelización y despatrimonialización

    Get PDF
    I La emergencia de los tecnocidanos 1. Legos, amateurs, nerds y tecnoácratas. 1.1 La construcción social de los públicos de la ciencia 1.2 La demanda social de participación en ciencia 1.3 Tecnoacracia: de los amateurs a los hackers 2. Criptopolíticas: activismo y tecnologías de despliegue 2.1 La ciencia como gestión de datos 2.2 La GPL como motor de Internet 2.3 Bien común y open access II La movilización de los tecnocidanos 3. Movilización de híbridos: nuevos actores y nuevos consensos 3.1 La irrupción de los híbridos 3.2 La política de los casos: tablas y comentarios 4. Satelización de e-sujetos: cálculo distribuido y popular power 4.1. Grid computing y wifi networks: la próxima revolución 4.2 La política de los casos: tablas y comentarios 5. Despatrimonialización de prácticas: open source y open access 5.1 La cultura hacker y el procomún 5.2 La política de los casos: tablas y comentarios III La promesa de los tecnocidanos 6. Las nuevas encrucijadas de la tecnociencia: ciudadanía y participación 6.1 Resumen 6.2 Recomendaciones 6.3 Bibliografía (resumen)La participación ciudadana en ciencia conoce en nuestra época una verdadera edad dorada. Hace apenas unas décadas era inimaginable la creciente influencia que la ciudadanía iba a tener en la marcha de la ciencia. Y, aunque algunos movimientos de activistas contra las nucleares lograron en los 80 situar en la agenda política de muchos gobiernos la resistencia popular al desarrollo de esta fuente de energía, lo cierto es que la presencia hoy de las ONG en la toma de decisiones comienza a ser algo habitual y, en algunos casos, alcanza la condición de estructural. Las sociedades modernas han necesitado explorar formas muy innovadoras de organización social que les permitan afrontar las nuevas encrucijadas a las que nos aboca la llamada sociedad del riesgo. Nadie discute que estamos hablando de asuntos de extrema gravedad, como lo manifiesta la experiencia adquirida durante las anteriores crisis del SIDA, de los alimentos y cultivos transgénicos y de las vacas locas. En su conjunto, los tres casos señalados (entre los muchos que podríamos mencionar) comparten algunos aspectos que aquí queremos subrayar. Quienes desde responsabilidades de gobierno o empresariales lamentaron el desbordamiento del tradicional sistema de expertos por los movimientos de agitación ciudadana, aprendieron que la gestión de estos conflictos tiene que ser menos vertical y más dialogante. Descubrieron también que no es fácil hacer frente a organizaciones que saben aprovechar muy bien las múltiples oportunidades que ofrecen las nuevas tecnologías de la información y de la comunicación (TIC).Fundación Española de Ciencia y Tecnología, FECYT (2004

    The NADES glyceline as a potential Green Solvent: A comprehensive study of its thermophysical properties and effect of water inclusion

    Get PDF
    In this paper, two Natural Deep Eutectic Solvents, glyceline (Gly) and glyceline-water (GlyW), containing choline chloride as acceptor H-bond compound and glycerol as donor H-bond group are studied. For glyceline the mole relation is 1 (choline chloride): 2 (glycerol) and for glyceline-water the mole relation is 1 (choline chloride): 1.99 (glycerol): 1.02 water. The ternary NADES has been synthetized and characterized chemically by NMR techniques for this work. Several thermophysical properties in a wide range of temperature (278.15–338.15)¿K and at atmospheric pressure (0.1¿MPa) have been measured for both compounds: density, , speed of sound, , refractive index, , surface tension,, isobaric molar heat capacity, , kinematic viscosity, , and electric conductivity,. Furthermore, some related properties have been also calculated: isobaric expansibility, , isentropic compressibility, , molar refraction, , entropy and enthalpy of surface formationper unit surface area ( and ), and dynamic viscosity, , and viscous flow and electrical conductivity activation energies. The results have been discussed in terms of the effect of temperature and the inclusion of water. We conclude that the compound containing water into the structure has a higher molar volume and a higher fluidity. The binary NADES (Gly) is a more structured liquid than ternary one (GlyW)
    • …
    corecore